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Abstract. An alternative to the L̈uders generalization of the von Neumann projection is
formulated allowing a generalization to measurements represented by positive operator-valued
measures. This generalization is based on the notions of non-orthogonal projections and
bi-orthonormal systems in Hilbert–Schmidt space, and is closely related to phase-space
representations of quantum mechanics. A number of applications will be discussed. It is
demonstrated that the alternative projection has a natural interpretation as a representation of the
information on the initial state, to be obtained by the measurement.

1. Introduction

The von Neumann–L̈uders projection has its origin in the prehistory of quantum
measurement theory. It yields a prescription of the way a quantum-mechanical object is
ideally influenced by a measurement. For an observableA having a nondegenerate spectrum
this was thought by von Neumann [1] to take place according to the scheme

|9〉 = |ψ〉 ⊗ |θ0〉 → |9f 〉 =
∑
m

cm|am〉 ⊗ |θm〉 (1)

in which |ψ〉 = ∑
m cm|am〉 and |θ0〉 are the initial states of the object and measuring

instrument, respectively,|am〉 is the eigenvector of observableA corresponding to eigenvalue
am, and |θm〉 is a pointer state of the measuring instrument. Measurements satisfying this
scheme are calledmeasurements of the first kind, such measurements leaving the object state
unchanged if its initial state is an eigenvector of the measured observable.

For the density operator of the object this implies the following transition from initial
stateρ to final stateρof :

ρ = |ψ〉〈ψ | → ρof = Tra |9f 〉〈9f | =
∑
m

|cm|2|am〉〈am|. (2)

It is important to note that thisρof can be written as

ρof =
∑
m

(Tr ρEm)Em (3)

whereEm = |am〉〈am| is the one-dimensional projection operator onto the vector|am〉. Since∑
m(Tr ρofEm)Em = ρof the state transformation (2) is a projection.

In order to accommodate possible degeneracy of the eigenvaluesam this scheme was
generalized by L̈uders [2] according to

ρ → ρof =
∑
m

EmρEm (4)
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in which Em is now the (possibly multidimensional) projection operator of the subspace
spanned by the eigenvectors corresponding toam. In contrast to the transition to (3),
transition (4) is also a projection for multidimensional projection operatorsEm. It reduces
to the von Neumann projection (2) in the case of non-degeneracy. Apart from being
projections, transitions (2) and (4) map density operators onto density operators (i.e.ρof > O
if ρ > O, and Trρof = Tr ρ). By Ludwig [3] such mappings are referred to as mi-
morphisms.

It is often considered as a virtue that the Lüders projection (4) satisfies the minimum-
disturbance property characteristic of first-kind measurements (e.g. Furry [4]). It is easily
seen that for both the von Neumann and the Lüders projection we have

Tr ρofEm = Tr ρEm (5)

indicating that a measurement of observableA in the final object stateρof yields the same
probability distribution as the measurement performed in the initial stateρ. The property
(5) is sometimes taken as defining a measurement of the first kind (e.g. Buschet al [5]).

In the literature on the foundations of quantum mechanics, measurements of the first kind
are very popular, presumably because the simple schemes (1), (2) and (4) allow us to make
deductions in a relatively simple manner. However, it was realized by Wigner [6] that these
schemes cannot be generally valid, in particular if there is an additive constant of the motion.
Also the problems with observables having a continuous spectrum are well known. These
problems have been a reason for doubting the general validity of the von Neumann–Lüders
projection as well as of the concept of measurement of the first kind (see e.g. [7]). Doubts
regarding their necessity as characteristics of quantum-mechanical measurement procedures
are also generated by the circumstance that widely used measurement procedures do not
satisfy them. Thus, in an ideal photon counter the photons are annihilated, ideally yielding
the vacuum state as the final state of the electromagnetic field for any initial state. Minimal
disturbance of photon number would be possible in this measurement process only on the
basis of a certain inefficiency of the detection process.

Also the Stern–Gerlach measurement procedure for measuring a spin component, being
a paradigm of first-kind measurements, satisfies this characteristic only in an approximate
sense [8, 9]. So that the Stern–Gerlach device works properly, it is necessary that the
magnetic fieldB is inhomogeneous. Because the magnetic field must satisfy Maxwell’s
equations, and, hence, should satisfy the requirement∇·B = 0, such an inhomogeneity is
inconsistent with the assumption generally made in textbooks of quantum mechanics, that
the direction ofB is the same everywhere. Hence, the interaction Hamiltonian−(µ/2)B ·σ
does not contain just one single spin component but contains different non-commuting Pauli
spin matrices, thus preventing a single spin component from being conserved. Since the
inhomogeneity of the magnetic field is essential to the functioning of the Stern–Gerlach
measurement, its deviation from first-kindness is even crucial.

The examples discussed above suggest that the concept of a measurement of the first
kind at most has a theoretical importance, and is seldom realized in practice. It is important
to note that the concept, being a requirement to be met by the post-measurement state of
the object, hinges strongly on thepreparativeaspect of measurement. When we take the
point of view that measurements are performed in order to obtain knowledge about the
state of the object immediatelyprecedingthe measurement, then it is not very important in
which state the object is left after the measurement. From thisdeterminativepoint of view
it is completely unimportant whether a measurement procedure satisfies the von Neumann–
Lüders prescription or not. In particular, we do not have any reason to require the final
object state to be prepared according to the projection (4).
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In general, the final states of both object and measuring instrument are determined by the
measurement interaction. Letρa be the density operator of the initial state of the measuring
instrument, andU = e−

i
h̄
HT . Thenρf = UρρaU † is the final state of the combined system.

From a determinative point of view the final stateρaf of the measuring instrument is the
crucial quantity because it yields the probabilities of the pointer positions that are directly
compared with the experimental data:

pm = TrHa ρaf Eam ρaf = TrHo ρf (6)

in which the operatorsEam define the spectral representation of the pointer observable.
These probabilities can be written according to

pm = TrHo ρ TrHa ρaU
†EamU. (7)

DefiningMm := TrHa ρaU
†EamU the probabilities (7) can be represented as

pm = Tr ρMm Mm = M†m > O
∑
m

Mm = I (8)

thus enabling us to consider them as properties of the initial object stateρ.
It is important to note that the operatorsMm in (8) in general are not projection operators,

as would have been obtained if the probabilities were related to the spectral representation
of a Hermitian operator, as is the case in the Dirac–von Neumann formulation of quantum
mechanics. By now it is well known (e.g. [10, 11, 3, 5]), however, that the latter formalism
is too restrictive to encompass all experimental measurement procedures used in actual
practice. The probability distributions of most quantum measurements should be given by
(8) in which the set of operators{Mm} constitute a decomposition of the identity generating
a positive operator-valued measure (POVM) (for applications to photon detector and Stern–
Gerlach, see e.g. [12, 9]). Measurements within the domain of application of the Dirac–von
Neumann formalism just correspond to a subclass described byorthogonal decompositions
of the identity generating projection-valued measures (PVM). A second reason to doubt
the general validity of the von Neumann–Lüders projection is that its formulation as given
above only applies to measurements represented by the Hermitian operators of the Dirac–von
Neumann formalism.

The final object stateρof is obtained fromρf by partial tracing over the apparatus Hilbert
space:ρof = TrHa ρf . This state is completely determined by the initial conditions and the
measurement interaction. For each measurement procedure corresponding to a PVM it is
possible to verify whether this state equals (3). For most realistic measurement procedures
this is not the case (see [13] for a discussion of a widely used model for measuring PVMs).
It is straightforward to see that for arbitrary measurements of POVMs the stateρof can be
given according to

ρof =
∑
m

pmρofm ρofm = TrHa Eamρf
pm

. (9)

Here the density operatorρofm describes the object’s post-measurement state conditional on
the measurement resultm [14]. Only for very particular measurement interactions does this
coincide with the stateEmρEm/Tr ρEm prescribed by the von Neumann–Lüders projection.
By Buschet al [5] it is proposed to generalize the definition of first-kind measurements to
measurements described by a POVM, so as to satisfy an equality analogous to (5),

Tr ρofMm = Tr ρMm (10)

in which ρof is the post-measurement object state (9). However, since this equality hinges
on the preparative aspect of measurement, as before it seems to impose on the interaction
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between object and measuring instrument requirements that are both unnecessary and hard
to meet in actual practice.

It is the purpose of this paper to propose an alternative to the Lüders projection (4),
generalizing the von Neumann projection to measurements described by POVMs, that is
both relevant in adeterminativesense and valid for all such measurements. This is done
in section 2. In section 3 a number of applications of the alternative projection will be
discussed. Finally in section 4 an interpretation of the projected state will be given deviating
from the interpretation as a description of the final object state.

2. Generalized von Neumann projection

In this section a generalization of the von Neumann projection (2) is defined, valid for
measurements represented by arbitrary POVMs{Mm} with linearly independent operators
Mm. For simplicity we shall restrict the general formulation to finite-dimensional Hilbert
spaces, although an extension to infinite dimensions seems to be straightforward. Then the
operatorsMm can be considered as vectors in Hilbert–Schmidt spaceHHS, the set{Mm}
constituting a (generally non-orthogonal) basis of a subspaceH{Mm}. Within this subspace
a bi-orthonormal system (cf appendix A) is constructed by requiring

M ′m′ =
∑
m

βm′mMm

〈Mm,M
′
m′ 〉 = TrMmM

′
m′ = δmm′ .

(11)

Since the coefficientsβm′m are real we haveM ′m = M ′†m.
Within Hilbert–Schmidt space we now define the non-orthogonal projections

(cf appendix A) |Mm〉〈M ′m| and |M ′m〉〈Mm|, which are in general non-Hermitian
(super)operators. However, analogously to (22) the projection operator

P{Mm} =
∑
m

|Mm〉〈M ′m| =
∑
m

|M ′m〉〈Mm| (12)

(summation over all elements of the decomposition of the identity) is a Hermitian operator on
Hilbert–Schmidt space,P{Mm} = P∗{Mm}. Due to hermiticity it equals the unique orthogonal
projection onto the subspaceH{Mm},

P{Mm}HHS = H{Mm}.

Using (12), the generalized von Neumann projection is defined according to

ρ → P{Mm}(ρ) =
∑
m

(TrM ′mρ)Mm =
∑
m

(TrMmρ)M
′
m. (13)

It is easily seen thatP{Mm}(ρ) reduces to (3) if the POVM is a maximal PVM for which
the operatorsMm are one-dimensional projection operators. From (11) it also immediately
follows that

TrP{Mm}(ρ)Mm = Tr ρMm. (14)

In contrast to (10), this equality holds true for any quantum-mechanical measurement
procedure represented by a POVM.

The mapping (13) is a mi-morphism. This is proven as follows.
(i)

P{Mm}

(∑
m

(TrMmρ)M
′
m

)
=
∑
m

(TrMmρ)
∑
m′
(TrMm′M

′
m)M

′
m′
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yielding
∑

m(TrMmρ)M
′
m because of (11). Hence,P2

{Mm} = P{Mm}.
(ii)

TrMmM
′
m′ = δmm′∑

m

Mm = I

→ TrM ′m = 1.

Hence

TrP{Mm}(ρ) = Tr

(∑
m

(TrMmρ)M
′
m

)
= Tr ρ.

(iii) The projector P{Mm} onto the subspaceH{Mm} is a Hermitian (super)operator.
Because the operatorsM ′m are in general not non-negative, the propertyP{Mm}(ρ) > O

cannot easily be proven using definition (13). However, because of Naimark’s theorem (cf
appendix B) there exists a second Hermitian projector onto the subspaceH{Mm}, namely

Porth
{Mm}(A) = PAP

P = P † the Hermitian projection operator constructed by the Naimark theorem by relating
the operatorsMm to a PVM {Em} according toMm = PEmP ; henceMm = PMmP and

Porth
{Mm}HHS = H{Mm}.

Because of the uniqueness of Hermitian projectors we must have

P{Mm} = Porth
{Mm}.

Then

PρP > O → P{Mm}(ρ) > O.

3. Applications

3.1. Non-maximal PVMs

Let {Em} be a non-maximal PVM, withNm = TrEm the dimension of subspaceEmH.
Then

TrEmE
′
m′ = δmm′ → E′m = Em/Nm.

Hence

P{Em}(ρ) =
∑
m

(Tr ρEm)Em/Nm.

For maximal PVMs (for whichNm = 1∀m) this equals result (3) of the von Neumann
projection. In general it is, evidently, different from the result of the Lüders projection (4).

3.2. Invertible non-ideal measurement of PVM{Em}
In [12] a non-ideal measurement of the PVM{Em} was defined as a measurement represented
by the POVM{Mm} satisfying

Mm =
∑
m′
λmm′Em′ λmm′ > 0

∑
m

λmm′ = 1.

A non-ideal measurement is called invertible if the non-ideality matrix(λmm′) has a unique
inverse(λ−1

m′m). Then

M ′m =
∑
m′

λ−1
m′m

Nm′
Em′
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Figure 1. Joint non-ideal measurement of two polarization observables.

and

P{Mm}(ρ) =
∑
m

(TrEmρ)Em/Nm.

It is important to note that this result equals the one obtained for ideal measurements of the
PVM {Em} as obtained in section 3.1, both for maximal and non-maximal PVMs.

3.3. Joint non-ideal measurement of incompatible PVMs{Em} and {Fn}
As a third application we consider the joint non-ideal measurement of incompatible
observables, defined in [12] according to the requirement that the measurement is represented
by a bivariate POVM{Mmn} satisfying∑

n

Mmn =
∑
m′
λmm′Em′ λmm′ > 0

∑
m

λmm′ = 1∑
m

Mmn =
∑
n′
µnn′Fn′ µnn′ > 0

∑
n

µnn′ = 1.

As an example we shall calculate the projected density operator for the joint non-ideal
measurement of two polarization observables by the measurement arrangement of figure 1,
in which a semitransparent mirror (transmission coefficientγ , 0 < γ < 1) has outgoing
beams into the directions of polarizing nicols oriented in different directionsθ1 and θ2,
respectively.

For the present purpose it is unimportant that this measurement can be interpreted as a
joint measurement. Hence, we can ignore the possibility to write the POVM in a bivariate
form. Then the POVM is given as{M1 = γE+,M2 = (1−γ )F+,M3 = γE−+(1−γ )F−},
representing the probabilities that the photon is detected either in detectorD1 or in D2, or
is absorbed in one of the nicols. Using the representation generated by the first nicol the
operators can be given according to

E+ =
(

1 0
0 0

)
F+ =

(
p

√
p(1− p)√

p(1− p) 1− p
)

E− = I − E+ F− = I − F+
p = TrE+F+ = cos2(θ1− θ2).
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From (11) we obtain

M ′1 = {2γp(1− p)}−1[{1− γ (1− p)}E+
+{(1− γ )(1− p)− p}F+ + (1− p){γp − (1− γ )}I ]

M ′2 = {2(1− γ )p(1− p)}−1[{γ (1− p)− p}E+
+{1− (1− γ )(1− p)}F+ + (1− p){(1− γ )p − γ }I ]

M ′3 = {2p}−1[−E+ − F+ + (1− p)I ]

yielding

P{Mm}(ρ) =
1

2p(1− p)


[p(1− p + p1− p2)E+ + p(1− p + p2− p1)F+

+(1− p)(1+ p − p1− p2)E−
+(1− p)(1+ p − p1− p2)F−)]

p1 = Tr ρE+ p2 = Tr ρF+.

(15)

Although from the general theory it follows that this operator is non-negative, this is not
easily seen from its representation as given here, because for certain values ofp, p1 and
p2 the coefficients may be negative (for instance, 1− p + p1− p2 < 0 if p = 9

10, p1 = 1
4,

p2 = 1
2). A direct proof of the non-negativity of (15) can be given, though, taking into

account thatp, p1 andp2 should satisfy the triangle inequality

(2(1− p))1/2 6 (Tr ρ2+ 1− 2p1)
1/2+ (Tr ρ2+ 1− 2p2)

1/2.

The possibility of negative coefficients in (15) has important consequences for the
interpretation of the state functionP{Mm}(ρ): it is evidently not possible to interpret this
density operator as representing a mixture of states having sharp values of either{Em} or
{Fn}.

3.4. Eight-port optical homodyning

As a final example we consider eight-port optical homodyning (see figure 2), which is a
detection method for monochromatic optical signals, known to be represented by the POVM
M(q, p) = |α〉〈α|/2π , α = (1/

√
2)(q + ip), |α〉 a coherent state [15]. This example is

actually an infinite-dimensional one. Moreover, it is complicated by the continuity of the
variables−∞ < q <∞, −∞ < p <∞. Nevertheless, the methods developed before for

Figure 2. Eight-port optical homodyning.
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the finite-dimensional case will be seen to work properly also here if the mathematics is
treated in the usual sense proposed by Dirac, thus demonstrating that the extension of the
theory to infinite-dimensional Hilbert spaces does not seem to meet essential difficulties.

Generalizing (11) according to

TrM(q, p)M ′(q ′, p′) = δ(q − q ′)δ(p − p′)
it is straightforward to prove that the operatorsM ′(q, p) can be represented according to

M ′(q, p) = 1

2π

∫
du dv e

u2+v2

4 ei(uq+vp)e−i(uQ+vP ) = M ′(q, p)†. (16)

Then the projected density operator is given according to

P{M(q,p)}(ρ) =
∫

dq dp

(
Tr
|α〉〈α|

2π
ρ

)
M ′(q, p). (17)

It is straightforward to prove that

P{M(q,p)}(ρ) = ρ. (18)

Result (18) is an important one, demonstrating that eight-port optical homodyning is a
completemeasurement allowing us (at least in principle) to calculate the density operator
ρ of the initial state from the probability distribution Tr(|α〉〈α|/2π)ρ obtained in the
measurement. This result can also be obtained by employing the fact that the eight-
port homodyning measurement can be interpreted as a joint non-ideal measurement of
the observablesQ = (a + a†)/√2 and P = −i(a − a†)/√2 of the monochromatic
electromagnetic mode [16].

4. Interpretation

4.1. Mathematical interpretation

Results (17) and (18) exhibit an important link between the projected state functionP{Mm}(ρ)
and phase-space representations of quantum mechanics [17, 18], the most well known being
the Wigner–Weyl representation

ρWW(q, p) = Tr ρW(q, p)

W(q, p) = 1

(2π)2

∫
du dv ei(uq+vp)e−i(uQ+vP ) = W(q, p)†

whereQ and P are position and momentum operators as given above. The operators
W(q, p) can be considered as constituting (in the Dirac sense) a complete orthogonal set
of vectors in Hilbert–Schmidt space, since

TrW(q, p)W(q ′, p′) = 1

2π
δ(q − q ′)δ(p − p′)

and

A = 2π
∫

dq dp (TrAW(q, p))W(q, p) A ∈ HHS.

Defining

W ′(q, p) = 2πW(q, p)

we see that the sets{W(q, p)} and {W ′(q, p)} constitute a bi-orthonormal system inHHS.
Hence, the Wigner–Weyl representation corresponds to an expansion of Hilbert–Schmidt
vectors using the orthogonal basis{W(q, p)}.
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Analogously, the so-called�-representations can be interpreted as expansions using
non-orthogonal bases for Hilbert–Schmidt space. Thus,

ρ =
∫

dq dp (Tr ρW�(q, p)
†)W ′�(q, p)

W�(q, p) = 1

(2π)2

∫
du dv ei(uq+vp)�(u, v)e−i(uQ+vP )

W ′�(q, p) =
1

2π

∫
du dv e−i(uq+vp)�(u, v)−1ei(uQ+vP )

TrW�(q, p)
†W ′�(q

′, p′) = δ(q − q ′)δ(p − p′).
Note that the Wigner–Weyl representation is obtained for�(q, p) = 1. With �(q, p) =
exp{−(u2 + v2)/4} we have a special case of the Husimi representation [19], yielding
W�(q, p) = |α〉〈α|/2π andW ′�(q, p) = M ′(q, p) as given by (16). Hence, the elements
of the POVM of eight-port homodyning constitute (in the Dirac sense) a complete non-
orthogonal set of vectors in Hilbert–Schmidt space, this being the mathematical source of
the completeness of this measurement procedure.

It is now possible to see how things work out if a measurement is not a complete
one. In that case the elementsMm do not span the whole Hilbert–Schmidt space, but only
a subspaceH{Mm}. For this reason the measurement does not yield complete information
about the initial stateρ. Actually, a measurement of an incomplete POVM{Mm} only
allows us to obtain information on the stateP{Mm}(ρ), which is just the projection ofρ
onto the subspaceH{Mm}. If ρ ∈ H{Mm} thenP{Mm}(ρ) = ρ, and the measurement yields
complete information on the initial state. However, this measurement does not yield any
information on the part ofρ that is in subspace(I − P{Mm})HHS. Evidently, the density
operatorP{Mm}(ρ) represents the information regarding the initial stateρ, to be obtained by
the measurement of the POVM{Mm}.

From this perspective it is clear that measurements represented by the Hermitian
operators of the Dirac–von Neumann formalism (i.e. PVMs) are not singled out in
any special way within the class of all possible measurement procedures. Comparing
applications 3.1 and 3.2 we see that the projected density operators are the same for an ideal
and non-ideal measurement of a PVM if the latter is an invertible one. We shall interpret this
asinformational equivalenceof these measurements, caused by the fact that the operators of
the POVM{Mm} span the same subspace of Hilbert–Schmidt space as the operators of the
PVM {Em}. However, as is now becoming abundantly clear [20, 21, 15] many measurement
procedures exist yielding more information onρ because the elements of their POVMs span
larger subspaces. Applications 3.3 and 3.4 are examples of such measurements. In principle
the subspace of Hilbert–Schmidt space spanned can range from a one-dimensional one (in
case of an uninformative measurement represented by the POVM consisting only of the
operatorI ) to the whole of Hilbert–Schmidt space (in case of a complete measurement).
It seems that the emphasis in the literature on the foundations of quantum mechanics on
measurements represented by PVMs can hardly be justified by the experimental importance
of such measurements (for instance, all scattering experiments determining differential cross
sections should be analysed in terms of (positive) operator-valued measures).

Since only the partP{Mm}(ρ) of ρ that is in H{Mm} can be reconstructed from the
data obtained by the measurement of the POVM{Mm} there is an information deficit
associated with any incomplete measurement, preventing a complete reconstruction ofρ.
As a quantitative measure of the information deficit it is possible to take the quantity
D{Mm}(ρ) := H(P{Mm}(ρ))−H(ρ), in whichH(ρ) is the von Neumann entropy defined by
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H(ρ) = −Tr ρ ln ρ. It is possible to prove (see appendix C) that for arbitrary POVM{Mm}
D{Mm}(ρ) > 0. (19)

Evidently, for complete measurementsD{Mm}(ρ) = 0. For the uninformative measurement
represented by the POVM{I } we find P{I }(ρ) = I/N , yielding H(P{I }(ρ)) = lnN , and
D{I }(ρ) = lnN −H(ρ). HenceD{I }(ρ) is reaching its maximal value lnN for pure states
ρ, the information deficit being smaller if the initial state is a mixture.

4.2. Physical interpretation

As already noted before we do not have any reason to suppose that the projected state
P{Mm}(ρ) has any simple relation to the final object stateρof of the measurement. Although
for the Lüders projection (4) we haveH(ρof ) − H(ρ) > 0 (which is often thought to be
an attractive property because the measurement process is thought to increase entropy),
the example of the ideal photon counter (ideally satisfyingH(ρof ) = 0) demonstrates that
measurement disturbance need not imply that the distribution of the final state over the
possible output channels is more disorderly than the distribution of the initial state over
the input channels. Whereas the Lüders projection is a fruit of a ‘minimal disturbance’
philosophy yielding entropy increase, it is seen from the example that a larger disturbance
may increase order in the sense of concentrating the output in a single channel. This is a
different way of disqualifying the L̈uders projection as an attractive property of quantum
measurement.

Since no entropy increase is required (in the sense defined by the von Neumann entropy)
in the transition from initial to final object state of a quantum-mechanical measurement, the
generalized projection (13), satisfying (19), must have a different interpretation. As found
in section 4.1, the projected stateP{Mm}(ρ) contains information on theinitial rather than the
final object state of the measurement. For this reason it seems reasonable not to associate
(13) with a transition from initial to final state, but interpret it as a transition between
different descriptions of the initial state. ThenP{Mm}(ρ) might be seen as a description of
the initial state as far as ‘observable’ by means of a measurement of the POVM{Mm}.

An interpretation in the sense proposed here is a rather natural one, and not specific to
quantum mechanics. As a matter of fact, it is widely used in many domains of physics. Thus,
for instance a rigid-body description of a billiard ball is valid if the description is restricted
to those observations that are insensitive to the internal dynamics of the constituting atoms.
Within the context of such measurements the rigid-body model yields a description that is
comparable with the description by the state functionP{Mm}(ρ). A description by means
of the density operatorρ is necessary if information also has to be dealt with that is valid
within the contexts of measurements of POVMs different from{Mm}.

Continuing the billiard ball analogy, it might be asked whether the stateP{Mm}(ρ) could,
maybe, be interpreted in a contextualistic-realist sense as the state of the object as itis within
the context of the measurement arrangement of the POVM{Mm}. Thus, a billiard ballis a
rigid body as long as the experimental context allows it to ‘be’ one (and not just ‘appears
to be one’). Such a contextualistic-realist notion is sometimes implied by the Copenhagen
interpretation, although in this latter interpretation the contextual state is often associated
with the final rather than with the initial object state. As suggested by the foregoing, if
P{Mm}(ρ) would describe such acontextualstate, then it should refer to the initial rather
than to the final state of the measurement. This would mean that the quantum-mechanical
reality corresponding to it must be shaped by the presence of the measurement arrangement
even before the interaction between object and measuring instrument has started. Thus, the
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von Neumann projection (1) might be thought to be interpretable as the process in which
the value of the measured (Dirac–von Neumann) observable comes into being at the first
contact of object and measuring instrument, the subsequent measurement process serving
to translate this microscopic event into a directly observable macroscopic one.

Because, due to (14), the statesρ andP{Mm}(ρ) yield the same quantum-mechanical
measurement result for the POVM{Mm} we do not have any means to test whether the
initial state within the context of the measurement is really one or the other. For this reason
the contextualistic-realist interpretation can neither be verified nor falsified experimentally.
However, the examples of generalized measurements discussed above do not seem to favour
such an interpretation. Thus, in the case of the inefficient photon detector it is much more
natural to interpret the measurement resultn as the number of photons registered by the
detector (out of the numberm > n that were actually present), then as the result of an ideal
registration of a non-ideal number of photons being present in the initial state. Also, example
3.3 is not particularly favourable to an interpretation of the contextual state (15) as a state in
which either one or both of the observables measured jointly (be it non-ideally) would have
adopted a certain value of the measured observable within the context of the measurement
arrangement. For these reasons a contextualistic-realist interpretation of the stateP{Mm}(ρ)
does not seem possible surpassing an attribution of a more or less symbolic meaning as
representing a preparation procedure in which, apart from the preparing apparatus, also the
measuring instrument (i.e. Bohr’swholemeasurement arrangement) is taken into account. It
seems that such an interpretation of the stateP{Mm}(ρ) could be accommodated in a natural
way in the empiricist interpretation of quantum mechanics developed in [22].
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Appendix A. Non-orthogonal projections in Hilbert space and bi-orthonormal systems

Let {e1, . . . ,eN } be a non-orthogonal basis in anN -dimensional Hilbert spaceH. A bi-
orthonormal system is defined in the following way:

〈fn, em〉 = δnm. (20)

Then also the vectors{f1, . . . ,fN } constitute a non-orthogonal basis forH.
Using Dirac notation we define the operators

Pn := |en〉〈fn| (21)

satisfying

P2
n = Pn PnPm = O n 6= m.

Hence the operatorPn is a projection operator projecting ontoen parallel to the vectorsen′
with n′ 6= n, and, hence, in general non-orthogonally. From

P∗n = |fn〉〈en| 6= Pn
it is evident that the projection operators are non-Hermitian unless the basis{e1, . . . ,eN } is
an orthonormal one (in which casefn = en, and the projections (21) are orthogonal ones).

Let H{e1,...,eM } be the subspace spanned by the vectors{e1, . . . ,eM}, M 6 N. Then
the operatorP{M} =

∑M
n=1Pn is a non-orthogonal projection onto this subspace, i.e.
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P{M}H = H{e1,...,eM }. Analogously we haveP∗{M} =
∑M

n=1P∗n , andP∗{M}H = H{f1,...,fM },
demonstrating thatP{M} andP∗{M} have different subspaces as their ranges, unless we start
from an orthonormal basis. However, for any bi-orthonormal system we have

N∑
n=1

Pn =
N∑
n=1

P∗n = I. (22)

To a subspace ofH many projections correspond, having this subspace as its range.
However, among these there is only one unique projection operator that is Hermitian. This
is the projection operator corresponding to the orthogonal projection onto the subspace.

Appendix B. Proof of Naimark’s theorem for maximal POVMs

By Naimark [23, 11, 24] the following theorem has been proven.

Naimark’s theorem.If {Mm} is a POVM on a Hilbert spaceH, then there exists a Hilbert
spaceH′, a PVM {E′m} onH′, and an orthogonal projection operatorP , such thatPH′ = H
andMm = PE′mP .

In this appendix an elementary proof of the theorem is given for finite-dimensionalH
(dimension= N ), and a POVM{Mm} generated by a non-orthogonal decomposition of
the identity consisting ofM (M > N) elements, all being, up to a positive multiplicative
constant, equal to a one-dimensional projection operator (so-called maximal POVM [12]).
Thus

Mm = αmPm αm > 0 Pm = |ψm〉〈ψm| = P 2
m.

In order to prove the theorem we first prove a lemma on so-calledeutacticstars (cf Coxeter
[25]), consisting of an over-complete set of vectors{e1, . . . ,eM} spanning anN -dimensional
Hilbert space (M > N ), that can be obtained by orthogonal projection from an orthonormal
basis in anM-dimensional Hilbert spaceH′.

Lemma (cf Seidel [26]).A star is eutactic if and only if its Gram matrix has precisely two
eigenvalues (one of which equals 0).

Proof.
(i) Suppose

ei = Pci i = 1, . . . ,M

〈ci |cj 〉 = δij i, j = 1, . . . ,M

P = P † = P 2.

Then

〈ei |ej 〉 = 〈ci |Pcj 〉
implying that the Gram matrix is a matrix representation of an orthogonal projection operator
P . Hence the (Hermitian) Gram matrix has only eigenvalues 0 and 1.

(ii) Conversely, suppose that theM × M matrix (〈ei |ej 〉) has only two eigenvalues.
At least one of these must be 0, since, because of the linear dependence of the vectorsei ,
i = 1, . . . ,M, we have Det(〈ei |ej 〉) = 0. We also have Det(〈ei |ej 〉) = 5kλk, with λk the
eigenvalues of the Gram matrix. Because the Gram matrix has rankN there are exactly
M −N eigenvalues 0.
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Given that there is only one non-vanishing eigenvalue, it is possible by means of
normalization of the vectorsei to set this eigenvalue equal to 1. This implies that a
unitaryM ×M matrix (Uij ) exists, such that
M∑

j,k=1

Uij 〈ej |ek〉U †k` = Pi`

Pii = 1 i = 1, . . . , N Pi` = 0 for all other values ofi and`.

(23)

Define

qi =
M∑
j=1

U ∗ijej i = 1, . . . ,M. (24)

Then (23) can be written as

〈qi |q`〉 = Pi`.
From this it follows that

qi = 0 i = N + 1, . . . ,M

and

ej =
M∑
i=1

(U−1)∗jiqi =
N∑
i=1

(U−1)∗jiqi .

Moreover, the vectorsqi , i = 1, . . . , N constitute an orthonormal set. Because of (24) this
is an orthonormal basis ofH.

TakingH as a subspace of anM-dimensional Hilbert spaceH′ we obtain an orthonormal
basis in this latter space by supplementing the setqi , i = 1, . . . , N with M − N mutually
orthogonal normalized vectors in the orthogonal complement ofH in H′. The orthonormal
basis ofH′ thus obtained is indicated asq̃i , i = 1, . . . ,M (hence,q̃i = qi , i = 1, . . . , N).
WhenP is the orthogonal projection operator withinH′ onto the subspaceH, then for this
basis:

P q̃i = qi i = 1, . . . , N

P q̃i = 0 i = N + 1, . . . ,M.
(25)

A different orthonormal basis is construed inH′ by means of the unitary transformation

cj =
M∑
i=1

(U−1)∗ji q̃i j = 1, . . . ,M.

Using (25) this finally implies

Pcj = P
M∑
i=1

(U−1)∗ji q̃i =
N∑
i=1

(U−1)∗ji q̃i = ej j = 1, . . . ,M.

�

Now the Naimark theorem for maximal POVMs follows easily since maximal POVMs
can be associated with eutactic stars. Indeed, onH we have

∑M
m=1 αmPm = I .

Defining the (unnormalized) vectors|φm〉 = α
1/2
m |ψm〉 we obtain

∑M
m=1 |φm〉〈φm| = I , or∑M

m=1〈φk|φm〉〈φm|φ`〉 = 〈φk|φ`〉, implying that the Gram matrix(〈φk|φ`〉) is a projection.
Hence the presuppositions of the lemma are satisfied. Then the projection operators onto the
orthonormal basis ofH′ construed in the lemma are immediately seen to yield the elements
of the PVM sought for. �
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Appendix C. Positivity of the information deficit

The proof of (19) uses the well known inequality

TrA lnB − TrA lnA 6 TrA− TrB A,B > O (26)

that can easily be proven by employing the spectral representations of operatorsA andB,
and by using the convexity of the function lnx, implying the inequality lnx 6 1− x ∀x.

Because of the hermiticity of the projectionP{Mm} we have

H(P{Mm}(ρ)) = −TrP{Mm}(ρ) lnP{Mm}(ρ)
= −Tr ρP{Mm}(lnP{Mm}(ρ))
= −Tr ρ ln eP{Mm}(lnP{Mm}(ρ)).

Applying inequality (26) withA = ρ andB = exp(P{Mm}(lnP{Mm}(ρ)) = P{Mm}(ρ) the
inequality now immediately follows because TrA = TrB.
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